Мультиплексоры и демультиплексоры презентация. Мультиплексоры и демультиплексоры: принцип работы, объяснение на простом примере, применение. Шифраторы и дешифраторы

«Графики функций и их свойства» - 7) Функция непрерывна на любом интервале вида (?k; ? + ?k). Работа устно: tg(- x) = - tg x. 2) Чётность или нечётность функции. Опишите свойства функции y = ctgx. 6) Функция не имеет ни наибольшего, ни наименьшего значений. У функции y = tg x нет ни наибольшего, ни наименьшего значений. D(f): множество всех действительных чисел, кроме чисел вида x = ?k.

«Математика графики» - Как строятся графики? Что вы можете нарисовать с помощью графиков? Итак, цель исследования. Знакомимся с более широким применениием: медицина, геодезия… Какие способы построения графиков вам известны? Интересно. Графики: сложно, Вас ожидает работа: Наиболее естественно функциональные зависимости отражаются с помощью графиков.

«График функции 7 класс» - Сравните числа: Постройте график функции, используя правила перемещения: Определите соответствие, между графиком функции и формулой: Зависимая переменная. Построим график функции по точкам: Примеры, приводящие к понятию функции. Постройте график функции: Представьте выражения в виде одночлена стандартного вида:

«График обратной пропорциональности» - Чётность, нечётность. Непрерывность. Обратная пропорциональность. Гипербола. Гипербола и космические спутники. Применение гиперболоидов. Построение графика обратной пропорциональности. Оси симметрии гиперболы. Функция «Обратная пропорциональность». Гиперболоиды вращения. Область определения. Асимптота.

«Построение графиков» - Постройте график функции. Найти все значения а, при которых уравнение. Применим обобщенный метод областей. По рисунку легко считываем ответ. Исходное уравнение равносильно совокупности: Путем сложения соответствующих координат получаем искомый график. Построим графический образ соответствий, входящих в систему.

«Построение графика функции с модулем» - Закрепили знания на ранее изученных функциях. Y = x – 2. Вопрос классу. Обобщение. Построение графиков функций. Y = sinx. Попробуйте самостоятельно построить графики. Y = lnx. Урок обобщения и систематизации знаний. Усвоенные знания. Линейная функция. Y = f(x). Проектная деятельность. Y = x2 – 2x – 3.

На сегодняшний день приобретение дополнительной техники или специальных устройств является достаточно дорогим удовольствием. Для того, чтобы сохранить свои финансовые затраты, довольно часто используют такие устройства, как мультиплексор и демультиплексор, которые являются своеобразными селекторами данных.

В случае с мультиплексором есть возможность через один выход пропустить информацию с нескольких входов. А демультиплексор действует с точностью наоборот – распределяет полученные данные с одного входа на разные выходы.

Мультиплексор представляет собой такое оборудование, которое содержит в себе несколько входов сигнала, один или несколько входов управления и лишь один общий выход. Данное устройство дает возможность передавать определенный канал из одного из имеющихся входов на специальный и единственный выход.

При всем этом выбирается вход с помощью подачи определенной комбинации сигналов управления. Чаще всего мультиплексор необходим там, где нужно обустраивать для передачи сигналов большое количество каналов (сигналов), а денег и технического оснащения для этого нет.

Работоспособность данного типа устройства основана на том, что сигнал связи, даже в случае, если он один, очень часто не применяется на всю мощность. По этой причине имеется лишнее место для запуска других потоков информации по одной линии.

Разумеется, что если все эти потоки пускаются в изначальном виде и в одно и то же время, то на выходе получится обычная мешанина информационных данных, которую будет практически нереально расшифровать. Из-за этого мультиплексор производится при помощи разделения потоков информации разнообразными методами.

Разделение по частотным полосам – это когда все потоки данных идет в одно и то же время, но с разной частотой. При этом не происходит смешивание потоков. Кроме этого, есть возможность пустить потоки в различных временных линиях. Также особо популярным является способ кодирования. В этом случае все потоки обозначаются специальными знаками, кодируются и одновременно отправляются.

Мультиплексоры классифицируют по нескольким критериям: по месту использования или по своим целевым задачам и так далее.


Линия связи мультиплексора и демультиплексора

Основным различием мультиплексоров считается то, каким образом происходит уплотнение сигналов в один сплошной поток.

Мультиплексирование бывает таких видов:

  • временного характера;
  • пространственного типа;
  • кодовым;

Как правило, если каналы являются проводными, то в применении актуальны первые два метода, а для беспроводных каналов применяются все четыре варианта. Обычно, если речь идет о мультиплексоре, то подразумевается проводное устройство.

По этой причине стоит более подробно ознакомиться с частотным и временным методами:

Методы мультиплексирования


Чтобы исполнить частотное мультиплексирование необходимо для всех потоков определить определенный частотный период. Перед самим процессом нужно переместить спектра всех каналов, что входят в период иной частоты, что не будет никак пересекаться с иными сигналами. Кроме того, для обеспечения надежности, меж частотами делают определенные интервалы для дополнительной защиты. Данный метод применяют и в электрических, и в оптических связных линиях.

Временной вариант


Временное мультиплексирование и демультиплексирование

Чтобы передать каждый сигнал в сплошном потоке, что входит, имеется определенное количество времени. В этом случае, перед устройством стоит особая задача – гарантировать доступ циклов к общей среде перенаправления для потоков, которые входят на маленький временной промежуток.

При этом необходимо сделать так, чтобы не возникло нежелательное накладывание каналов друг на друга, которое смешивает информацию. Для этого используют специальные интервалы для защиты, которые ставят меж этими самыми каналами.

Этот способ используют, как правило, для цифровых связных каналов.

Классификация мультиплексоров

Мультиплексоры существуют таких видов:

  1. Терминальные. Их размещают на концах связных линий.
  2. Ввода и вывода. Такие устройства встраивают в разрыв связных линий, чтобы из сплошного потока выводить определенные сигналы. При их помощи можно обойтись без дорогостоящих мультиплексоров терминального типа.

Также мультиплексоры классифицируются таким способом:

Аналоговые мультиплексоры


Ключи аналогового типа являются специальными аналого-дискретными элементами. Аналоговый ключ может быть представлен в качестве отдельно взятого устройства. Набор такого рода ключей, которые работают на единственный выход с цепями выборки определенного ключа, являются специальным аналоговым мультиплексором. Аналоговое оборудование в каждый период времени выбирает определенный входной канал и направляет его на специальное устройство

Цифровые мультиплексоры


Цифровые оборудования делятся на мультиплексоры второго, первого и иных высоких уровней. Цифровые мультиплексоры дают возможность принимать сигналы цифрового типа из устройств низкого уровня. При этом можно их записать, образовать цифровое течение высокого уровня. Таким образом, входящие потоки синхронизируются. Также можно отметить, что они обладают одинаковыми скоростями.

Области применения

Видеомультиплексоры применяют в телевизионной технике и различных дисплеях, в системах охранного видеонаблюдения. На мультиплексировании базируется GSM-связь и разнообразные входные модемы провайдеров в интернете. Также данные устройства применяют в GPS-приемниках, в волоконно-оптических связных линиях широкополосного типа.

Мультиплексоры используют в различных делителях частоты, специальных триггерных элементах, особых сдвигающихся устройствах и так далее. Их могут применять для того, чтобы преобразовать определенный параллельный двоичный код в последовательный.


Схема применения оптического мультиплексора

Структура мультиплексора

Мультиплексор состоит из специального дешифратора адреса входной линии каналов, разнообразных схем, в том числе и схемы объединения.

Структуру мультиплексора можно рассмотреть на примере его общей схемы. Входные данные логического типа поступают на выходы коммутатора, и далее через него направляются на выход. На вход управления подается слова адресных каналов. Само устройство тоже может обладать специальным входом управления, который дает возможность проходить или не проходить входному каналу на выход.

Существуют типы мультиплексоров, которые обладают выходом с тремя состояниями. Все нюансы работы мультиплексора зависят от его модели.

Демультиплексор

Демультиплексор представляет собой логическое устройство, которое предназначено для того, чтобы свободно переключать сигнал с одного входа информации на один из имеющихся информационных выходов. На деле демультиплексор является противоположностью мультиплексору.

Во время передачи данных по общему сигналу с разделением по временному ходу необходимо как использование мультиплексоров, так и применение демультиплексоров, то есть прибор обратного функционального назначения. Это устройство распределяет информационные данные из одного сигнала между несколькими приемниками данных.

Особым отличием данного типа устройства от мультиплексоров считается то, что есть возможность обледенить определенное количество входов в один, не применяя при этом дополнительных схем. Но для того, чтобы увеличить нагрузку микросхемы, на выходе устройства для увеличения входного канала рекомендуется установить специальный инвертор.

В схеме самого простого такого устройства для определенного выхода применяется двоичный дешифратор. Стоит отметить, что при подробном изучении дешифратора, можно сделать демультиплексор гораздо проще. Для этого необходимо ко всем логическим элементам, которые входят в структуру дешифратора прибавить еще вход. Данную структуру достаточно часто называют дешифратором, который имеет вход разрешения работы.

На что следует обратить внимание при выборе мультиплексора?

  1. Какие камеры используются – черно-белые, цветные?
  2. Общее количество камер, которое возможно подключить к устройству.
  3. Тип мультиплексора.
  4. Разрешение устройства.
  5. Наличие детектора, определяющего движение.
  6. Можно ли подключить второй экран монитора?

При выборе мультиплексора или демультиплексора необходимо учитывать все нюансы и технические характеристики устройства.

Мультиплексор (MUX – multiplex- многократный) позволяет коммутировать в численном порядке информацию, поступающую с нескольких входных шин на одну выходную. С его помощью осуществляется временное разделение информации, поступающей по разным каналам.

Схема мультиплексора на 2 входа приведена на рис. 2.9.

Рис. 2.9 Схема двухвходового мультиплексора

– информационные входы

А – адресный вход

В зависимости от значения 1 или 0, подаваемых на адресный вход, на выходе Y формируется сигнал или . Это логическая структура мультиплексора вида 2:1. Читается: две линии к одной.

Логическая структура мультиплексора вида 4:1, составляющая ½ микросхемы К155КП2 приведена на рис. 2.10.

Рис. 2.10 Структурная схема мультиплексора вида 4:1

D 1 – D 4 – информационные входы

А, В – адресные входы

А – младший разряд

В – старший разряд

ЕI – разрешающий вход

Если EI=1, то на схемы И поступает 0 и мультиплексор не работает, то есть работа возможна только при EI=0.

В табл. 2.2 приведены все возможные сочетания входных воздействий и отклики мультиплексора.

Таблица 2.2

Мультиплексор вида 4:1

Входы Выход Y
Е А В
D1
D2
D3
D4

Мультиплексор К155КП1 имеет 16 информационных входов (D0 – D15) и четыре управляющих входа A, B, C, D, разрешающий вход V и один инверсный выход F. В зависимости от цифровой комбинации на управляющих входах сигналы с соответствующего информационного входа проходят в инвертированном виде на выход микросхемы. Передача информации возможна только при низком уровне на разрешающем входе.

Если требуется структура с большим количеством входов, то можно воспользоваться схемой наращивания разрядности, приведенной на рис. 2.11.

Рис. 2.1 Мультиплексор вида 32:1 на основе двух микросхем К155КП1

Адресными входами низших разрядов служат соединенные параллельно входы A, B, C и D. Разрешающие входы V в данном случае используются для подачи высшего (пятого) разряда Е: на первую микросхему в прямом виде, на вторую в инверсном. Первая микросхема работает при нулевом сигнале высшего разряда (Е=0); а вторая – при единичном (Е=1). Благодаря логическому элементу И-НЕ на выходе, выходные сигналы будут одинаковы с входными.

Мультиплексоры с Z-состоянием выходов легко позволяют увеличивать число коммутируемых каналов без привлечения дополнительных логических элементов для объединения выходов нескольких микросхем.

На рис. 2.12 приведена схема наращивания разрядности мультиплексора с использованием микросхем, имеющих Z-состояние выхода.

Рис. 2.12 Схема наращивания разрядности мультиплексоров, имеющих Z-состояние

Демультиплексоры

Демультиплексоры противоположны в функциональном отношении мультиплексорам, то есть их назначение распределить сигналы с одного информационного входа в желаемой последовательности по нескольким выходам.

Схема демультиплексора на 2 выхода представлена на рис. 2.13.

Рис. 2.13 Демультиплексор вида 1:2

Информационный вход

А – адресный вход

В зависимости от значения А информация поступает на или

Логические функции демультиплексора и дешифратора сходны между собой.

Дешифратор можно рассматривать как обращенный по входам демультиплексор, у которого адресные входы стали информационными, а бывший информационный вход стал управляющим.

Рассмотрим структуру демультиплексора-дешифратора, представленного на рис. 2.14.

Работу устройства описывают следующие булевые уравнения:

Рис. 2.14 Логическая структура демультиплексора 1:4 – дешифратора 2:4

A, B – адресные входы

Х – информационный вход

V – вход управления

В табл. 2.3 приведены режимы работы этой схемы в качестве демультиплексора и в качестве дешифратора.

Таблица 2.3

Таблица истинности демультиплексора-дешифратора

Входы Выходы
В А X V
DMX
DC

Типичным представителем демультиплексора - дешифратора является интегральная микросхема К155ИД3 (аналог 74154).

A, B, C, D – информационные входы

G1, G2 – разрешающие входы

Режим демультиплексора 1:16

G1 = 0, тогда G2 – информационный. Кодовая комбинация A-B-C-D переводит один из 16 выходов в активное состояние, которому соответствует логический 0, остальные выходы сохраняют логическую 1.

Существенно, что сигналы на активном выходе повторяют сигналы в прямом виде, поступающие на информационный вход.

Режим дешифратора 4:16

G1 = G2 = 0, тогда A-B-C-Dинформационные входы.

Если G1 или G2 равен 1, то на всех выходах, независимо от состояний входов A-B-C-D установится логическая 1.

Мультиплексоры и демультиплексоры (ДМХ) КМОП являются коммутаторами сигналов в прямом смысле, то есть могут передавать аналоговые сигналы.

MUX как универсальный логический элемент

Использование мультиплексора в качестве универсального логического элемента основано на общем свойстве логических функций независимо от числа аргументов всегда равняться логической единице или нулю. Если на адресные входы мультиплексора подавать входные переменные, зная, какой выходной уровень должен отвечать каждому сочетанию этих сигналов, то предварительно установив на информационных входах потенциалы нуля и единицы согласно программе, получим устройство, реализующее требуемую функцию.

Примеры применения мультиплексора

1. Преобразование параллельного кода в последовательный.

Одним из способов перехода от параллельного кода к последовательному может служить схема, приведенная на рис. 2.15.

Рис. 2.15 Схема преобразования параллельного кода Х 0 - Х 15 в последовательный

Генератор вырабатывает импульсы, которые поступая на счетчик СТ заставляют его триггеры последовательно менять свое состояние от 0000 до 1111. Параллельный шестнадцатиразрядный код, подлежащий преобразованию в последовательный, подается на входы Х 0 – Х 15 . Каждый из входов Х 0 – Х 15 соединяется с выходом MUX согласно списку состояний счетчика. Перебрав весь список, мы выведем последовательно на выход F все разряды параллельного кода.

2. Программируя информационные входы MUX согласно таблице истинности можно получить устройства, реализующие любую логическую функцию, содержащую до n+1 переменных, где n – число адресных входов мультиплексора.

Пример № 1 : Реализовать на MUX функцию, заданную таблицей истинности:

Видим, что в пределах одной большой строки аргумент «а» не меняется, а аргумент «b» колеблется 0-1. Оценим взаимосвязь поведения аргумента «b» и отклика функции Y. Очевидно, что в верхней строке Y повторяет значения b, а в нижней - противоположен. Следовательно, от мультиплексора требуется выполнение всего двух функций: b и b̅, а это в два раза уменьшает мощность применяемого МХ. Схема реализации той же задачи примет вид:

Каждый из рассмотренных способов решения имеет свои достоинства и недостатки. Так при решении задачи первым способом нам не потребуются дополнительные логические элементы – инверторы, а при втором способе потребуется один инвертор. Зато, как уже отмечалось, при втором способе решения требуется мультиплексор меньшей мощности.

Пример № 2: Функция трех переменных задана таблицей истинности:

Y Примечание
F 1 = 1
F 2 =
F 3 = 0
F 4 =

Расчленим мысленно таблицу истинности на группы по 2 строки в каждой (в каждой группе неизменны; аргумент может иметь 2 состояния; F принимает одно из четырех значений:

F 1 = 1, F 2 = , F 3 = 0, F 4 =

Если переменные сигналы подключить к адресным входам MUX А и В, а на информационные входы подать согласно таблице постоянные потенциалы логической единицы и нуля и переменные сигналы , то получим искомую схему.

Пример № 3: Таблицей истинности задана функция трех переменных (мажоритарный элемент)

a b с Y Примечание
F 1 = 0
F 2 = c
F 3 = c
F 4 = 1

Решение: расчленим мысленно таблицу истинности на группы по 2 строки в каждой (в каждой группе a и b неизменны; аргумент «c» может иметь 2 состояния; F принимает одно из трех значений:

F 1 = 0, F 2 = с, F 3 = с, F 4 = 1

Реализация на MUX 4:1 с разрешающим входом

Пример № 4 : Разработать схему компаратора двухразрядных чисел А и В. А = ; В=

F Примечание
F 1 =
F 2 = 0
F 3 =
F 4 = 0
F 5 = 0
F 6 =
F 7 = 0
F 8 =

Пример № 5: Сумматор на MUX . Составим таблицу истинности для сумм двух одноразрядных чисел А и В и функции переноса Р i . Разобьем на две строки, так, что А и В не меняют свое значение, а . Найдем и для каждой пары строк таблицы.

Входы Выходы
А В

Реализация: Воспользуемся MUX К155КП2 или 564КП1 имеющими 2 четырехвходовых MUX в одном корпусе.

Сумматоры

Это устройства, предназначенные для сложения чисел в двоичном и реже в 2-10 коде.

Классификация сумматоров:

1) По характеру действия: комбинационные (не имеющие памяти);

накопительные (сохраняющие результаты вычислений).

2) По способу обработки чисел: последовательного и параллельного типа.

3) По способу формирования сигнала переноса: с последовательным, сквозным и групповым переносом.

Полусумматор

S = - функция суммы

P = - функция переноса

S – бит суммы; Р – бит переноса;

HS – half sum – полусумматор.

Обозначение на схемах

Таблица истинности полусумматора.

Входы Выходы
А В Р S

Развернутая схема полусумматора приведена на рис. 2.16.

Рис. 2.16 Полусумматор

Полусумматор пригоден для сложения двух чисел только в младшем разряде. Как видно из схемы сложения двух многоразрядных чисел для n-го разряда необходим бит переноса . Поэтому полный сумматор должен иметь 3 входа.

Полный сумматор

Таблица истинности сумматора

Входы Выходы
А В

Схема полного сумматора на элементах М2 приведена на рис. 2.17.

Рис. 2.17 Полный сумматор на элементах М2

Сумматор можно выполнить и на простых логических элементах (рис. 2.18).

Рис. 2.18 Полный сумматор на элементарных логических элементах.

Условное обозначение одноразрядного сумматора

Сумматоры последовательного действия

Используется один общий для всех разрядов полный сумматор с дополнительной цепью задержки (рис. 2.19).

Рис. 2.19 Структура последовательного многоразрядного сумматора

Оба слагаемых кодируются последовательностями импульсов, которые синхронно вводятся в сумматор через входы А и В, начиная с младших разрядов.

Цепь временной задержки (л.з.) обеспечивает хранение импульса переноса на время одного такта, то есть до прихода пары слагаемых следующего разряда, с которыми он будет просуммирован.

Достоинство: малые аппаратные затраты.

Недостатки: 1) низкое быстродействие, так как одновременно суммируется лишь пара слагаемых;

2) для хранения А и В и преобразования последовательного кода выходных импульсов S в параллельный необходимы дополнительные аппаратные затраты.

Сумматоры параллельного типа

Схема сумматора параллельного типа с последовательным переносом приведена на рис. 2.20.

Рис. 2.20 Параллельный сумматор с трактом последовательного переноса

Число сумматоров равно числу разрядов слагаемых, поэтому слагаемые А и В складываются во всех разрядах одновременно, а перенос Р поступает с окончанием операции сложения в предыдущем разряде.

Недостатки: Ограниченное быстродействие, так как формирование сигнала переноса на выходе старшего разряда не может произойти до тех пор, пока сигнал переноса младшего разряда не распространится последовательно по всей схеме.

Уменьшение времени распространения сигнала переноса достигается тем, что для каждого двоичного разряда дополнительно находятся два сигнала: образования переноса G i и распространения переноса H i .

3.7. Мультиплексоры и демультиплексоры

Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему единственному выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует управляющему двоичному коду.

Ну и частное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный.

Структуру мультиплексора можно представить различными схемами, например, вот этой:

Рис. 1 – Пример схемы конкретного мультиплексора

Самый большой элемент здесь это элемент И-ИЛИ на четыре входа. Квадратики с единичками - инверторы.

Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них подают информацию, которую предстоит выбрать. Входы А0-А1 называются адресными входами. Сюда и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y . Вход С – синхронизация, разрешение работы.

На схеме еще есть входы адреса с инверсией. Это чтобы сделать устройство более универсальным.

На рисунке показан, как еще его называют, 4Х1 мультиплексор. Как мы знаем, что число разных двоичных чисел, которые может задавать код, определяется числом разрядов кода как 2 n , где n – число разрядов. Задавать нужно 4 состояния мультиплексора, а, значит, разрядов в коде адреса должно быть 2 (2 2 = 4).

Для пояснения принципа работы этой схемы посмотрим на её таблицу истинности:

Так двоичный код выбирает нужный вход. Например, имеем четыре объекта, и они подают сигналы, а устройство отображения у нас одно. Берем мультиплексор. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта.

Микросхемой мультиплексор обозначается так:

Рис. 2 – Мультиплексор как МКС

Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и много выходов. Двоичный код определяет, какой выход будет подключен ко входу.

Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких своих выходов и подключает его к своему входу или, ещё, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов.

Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И частное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный.

Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования.

Из-за сходства схем мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексором и демультиплексором, смотря с какой стороны подавать сигналы.

Например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то есть, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (логических 0 или 1) существует возможность переключения аналоговых.

Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Рассмотрим схему селектора входов УМЗЧ . Построим её с использованием триггеров и мультиплексора.

Рис. 3 - Селектор входных сигналов

Итак, разберем работу. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор.

В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки.

Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого.

С одной стороны просто, с другой немного неудобно. Кто его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу сейчас. Хорошо бы поставить индикатор подключенного входа.

Вспоминаем семисегментный дешифратор. Переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выводы 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выводы 1 и 13). Входы дешифратора 4 и 8 (выводы 2 и 6) соединяем с корпусом (т. е. подаем лог. 0). Индикатор будет показывать состояние кольцевого счетчика, а именно цифры от 0 до 3. Цифра 0 соответствует первому входу, 1 - 2-му и т. д.


Рисунок 8.1 Упрощенное представление мультиплексора многопозиционным ключом Адресующий код А задает переключателю определенное положение, соединяя с выходом F один из информационных входов х i. При нулевом адресующем коде переключатель занимает верхнее положение х о, с увеличением кода на единицу переходит в соседнее положение x 1 и т. д. A х0х0 х1х1 х2х2 x [n] a1a1 a0a0 a n-1 F 2 n -1




Универсальные логические модули на основе мультиплексоров Универсальные логические модули (УЛМ) на основе мультиплексоров относятся к устройствам, настраиваемым на решение той или иной задачи. Универсальность их состоит в том, что для заданного числа аргументов можно настроить УЛМ на любую функцию.


Первый способ Настройки УЛМ Фиксация некоторых входов. Для этого способа справедливо следующее соотношение между числом аргументов и числом настроечных входов. Пусть число аргументов n и требуется настройка на любую из функций. Тогда число комбинаций для кода настройки, равное числу функций, есть 2n. Для двоичного кода число комбинаций связано с разрядностью кода выражением 2m, где m разрядность кода. Приравнивая число воспроизводимых функций к числу комбинаций кода настройки, имеем для числа настроечных входов соотношение m = 2n.


Рисунок 8.2 Схема использования мультиплексора в качестве УЛМ (а), примеры воспроизведения функций при настройке константами (б) и при переносе одного аргумента в число сигналов настройки (в) (а) (б) (в) Рисунок 8.2 а - иллюстрирует возможность воспроизведения с помощью мультиплексора любой функции n аргументов. Действительно, каждому набору аргументов соответствует передача на выход одного из сигналов настройки. Если этот сигнал есть значение функции на данном наборе аргументов, то задача решена. Разным функциям будут соответствовать разные коды настройки. Алфавитом настройки будет {0,1} настройка осуществляется константами 0 и 1. На рисунке 8.2 б показан пример воспроизведения функции неравнозначности x 1 х 2 с помощью мультиплексора "41".


Второй способ настройки УЛМ Большее число входов настройки наталкивает на поиск возможностей их уменьшения. Такие возможности существуют и заключаются в расширении алфавита настроечных сигналов. Рисунок 8.3 Логический блок выработки сигналов настройки УЛМ с переносом двух аргументов в сигналы настройки (а) и пример схемы воспроизведения функции четырех аргументов на мультиплексоре "41" (б) (а) (б)






Демультиплексор можно построить на основе точно таких же схем логического "И", как и при построении мультиплексора. Существенным отличием от мультиплексора является возможность объединения нескольких входов в один без дополнительных схем. Однако для увеличения нагрузочной способности микросхемы, на входе демультиплексора для усиления входного сигнала лучше поставить инвертор.






Если рассмотреть принципиальную схему самого дешифратора, то можно значительно упростить демультиплексор. Достаточно просто к каждому логическому элементу "И", входящему в состав дешифратора просто добавить ещё один вход – In. Такую схему часто называют дешифратором с входом разрешения работы. Условно-графическое изображение демультиплексора приведено на рисунке 6.




В МОП микросхемах не существует отдельных микросхем демультиплексоров, так как МОП мультиплексоры, описанные ранее по информационным сигналам не различают вход и выход, т.е. направление распространения информационных сигналов, точно также как и в механических ключах, может быть произвольным. Если поменять входы и выход местами, то КМОП мультиплексоры будут работать в качестве демультиплексоров. Поэтому их часто называют просто коммутаторами.




(устройства сравнения) определяют отношения между двумя словами. Основными отношениями, через которые можно выразить остальные, можно считать два "равно" и "больше". Компараторы (устройства сравнения) определяют отношения между двумя словами. Основными отношениями, через которые можно выразить остальные, можно считать два "равно" и "больше".







Что еще почитать