Вирусы – переходная форма от неживой к живой. Является ли вирус живым существом? Живые ли вирусы

Вирусы являются заразными, крошечными и довольно противными. Но живы ли они?

Не совсем, хотя это зависит от того, что вы имеете в виду под определением «живой». Живые существа, такие как растения и животные, содержат клеточный механизм, который позволяет им самовоспроизводиться. Вирусы же являются свободными формами ДНК или РНК, которые не могут воспроизводиться самостоятельно.

"Скорее всего, вирусы должны вторгаться в живой организм, чтобы иметь способность к размножению", — сказал доктор Отто Янг, профессор медицины и микробиологии, иммунологии и молекулярной генетики в школе медицины Университета Калифорнии, Лос-Анджелес.

Вирусы состоят из РНК или ДНК. Они просто копируют самих себя, захватывая механизм клеток для собственной репликации.

Характеристики жизни

Бесчисленные философы и ученые обсуждали, как определить, является ли какой-то объект живым. Согласно принятой характеристике жизни, все живые существа должны иметь возможность реагировать на раздражители, расти с течением времени, производить потомство, поддерживать стабильную температуру тела, усваивать энергию, состоять из одной или нескольких элементарных ячеек и адаптироваться к окружающей среде.

Тем не менее существует форма жизни, которая не подходит под каждую из этих характеристик. Большинство гибридных животных, таких как мулы (гибриды ослов и лошадей), не могут размножаться, потому что являются стерильными. Кроме того, камни могут расти, хотя и пассивным способом, с помощью нового материала, протекающего через них. Но эта проблема классификации уходит, когда используется более простое определение жизни.

Простые определения жизни

"Возьмите кошку, растение и камень и оставьте их в комнате на нескольких дней, — сказал Амеш Адалджа — врач и научный сотрудник Центра Джона Хопкинса по безопасности в области здравоохранения в Балтиморе. — Когда вы вернетесь, кошка и растение поменяются, но камень, по сути, останется тем же самым".

Как и камень, большинство вирусов останутся неизменными, если их оставить на неопределенное время в комнате. Кроме того, ученый отметил, что живые существа отличаются самогенерируемыми и самодостаточными действиями. Это означает, что они могут искать средства к существованию и вести себя так, чтобы быть в безопасности. Другими словами, они принимают меры, необходимые для поддержания дальнейшей жизни. К примеру, растение использует корни, чтобы найти воду, а животное способно отправиться на поиски пищи.

В отличие от растений или животных, вирусы не способны на самогенерируемые или самодостаточные действия.

Инертные объекты

Доктор Адалжа считает, что вирусы нельзя классифицировать как живые организмы. Они, по существу, инертны, если не вступают в контакт с живой клеткой. Существуют некоторые характеристики вирусов, которые определяют их место на границе с живыми существами: у них есть генетический материал — ДНК или РНК. Таким образом, вирусы нельзя назвать неживыми, как, к примеру, камень, но в то же время ученые не могут отнести их к категории живых существ. По сути, они даже не могут достичь уровня бактерий.

Все зависит от вашей точки зрения

Доктор Ян согласен с этими выводами. Он говорит, что без клетки вирус не может размножаться. С этой точки зрения, вирусы действительно неживые, если вы считаете, что главным признаком жизни является ее способность воспроизвести себя независимо от других условий.

Тем не менее, если ваше определение жизни зависит от того, может ли объект делать собственные копии с помощью других, то вирусы определенно можно назвать живыми.

Считается, что самыми первыми формами жизни на Земле были похожие на РНК молекулы. При правильных условиях они могли делать копии себя. Вирусы, возможно, произошли от этого предка, но утратили способность к самовоспроизведению.

Вирусы - существо или вещество?


В течение последних 100 лет ученые не раз меняли свое представление о природе вирусов, микроскопических переносчиков болезней.

Вначале вирусы считали ядовитыми веществами, затем - одной из форм жизни, потом - биохимическими соединениями. Сегодня предполагают, что они существуют между живым и неживым мирами и являются основными участниками эволюции.

В конце XIX века было установлено, что некоторые болезни, в том числе бешенство и ящур, вызывают частицы, похожие на бактерии, но гораздо более мелкие. Поскольку они имели биологическую природу и передавались от одной жертвы к другой, вызывая одинаковые симптомы, вирусы стали рассматривать как мельчайшие живые организмы, несущие генетическую информацию.

Низведение вирусов до уровня безжизненных химических объектов произошло после 1935 г., когда Уэнделл Стэнли (Wendell Stanley) впервые закристаллизовал вирус табачной мозаики. Обнаружилось, что кристаллы состоят из сложных биохимических компонентов и не обладают необходимым для биологических систем свойством - метаболической активностью. В 1946 г. ученый получил за эту работу Нобелевскую премию по химии, а не по физиологии или медицине.

Дальнейшие исследования Стэнли четко показали, что любой вирус состоит из нуклеиновой кислоты (ДНК или РНК), упакованной в белковую оболочку. Помимо защитных белков у некоторых из них есть специфические вирусные белки, участвующие в инфицировании клетки. Если судить о вирусах только по этому описанию, то они действительно больше похожи на химические субстанции, чем на живой организм. Но когда вирус проникает в клетку (после чего ее называют клеткой-хозяином), картина меняется. Он сбрасывает белковую оболочку и подчиняет себе весь клеточный аппарат, заставляя его синтезировать вирусные ДНК или РНК и вирусные белки в соответствии с инструкциями, записанными в его геном е. Далее происходит самосборка вируса из этих компонентов и появляется новая вирусная частица, готовая инфицировать другие клетки.

Такая схема заставила многих ученых по-новому взглянуть на вирусы. Их стали рассматривать как объекты, находящиеся на границе между живым и неживым мирами. По словам вирусологов Марка ван Регенмортеля (M.H.V. van Regenmortel) из Страсбургского университета во Франции и Брайана Махи (B.W. Mahy) из центров по профилактике заболеваний и контролю за их распространением, такой способ существования можно назвать "жизнью взаймы". Интересен следующий факт: при том, что долгое время биологи рассматривали вирус как "белковую коробку", наполненную химическими деталями, они использовали его способность к репликации в хозяйской клетке для изучения механизма кодирования белков. Современная молекулярная биология во многом обязана своими успехами информации, полученной при изучении вирусов.

Ученые кристаллизовали большинство клеточных компонентов (рибосомы, митохондрии, мембранные структуры, ДНК, белки) и сегодня рассматривают их либо как "химические машины", либо как материал, который эти машины используют или производят. Подобный взгляд на сложные химические структуры, обеспечивающие жизнедеятельность клетки, и стал причиной не слишком большой озабоченности молекулярных биологов статусом вирусов. Исследователи интересовались ими только как агентами, способными использовать клетки в своих целях или служить источником инфекции. Более сложная проблема, касающаяся вклада вирусов в эволюцию, остается для большинства ученых несущественной.

Быть или не быть?

Что означает слово "живой"? Большинство ученых сходятся во мнении, что помимо способности к самовоспроизведению живые организмы должны обладать и другими свойствами. Например, жизнь любого существа всегда ограничивается во времени - оно рождается и умирает. Кроме того, живые организмы имеют определенную степень автономии в биохимическом смысл е, т.е. в какой-то мере полагаются на собственные метаболические процессы, обеспечивающие их веществами и энерги ей, которые и поддерживают их существование.

Камень, равно как и капелька жидкости, в которой протекают метаболические процессы, но которая не содержит генетического материала и не способна к самовоспроизведению, несомненно, неживой объект. Бактерия же - живой организм, и хотя она состоит всего из одной клетки, она может вырабатывать энерги ю и синтезировать вещества, обеспечивающие ее существование и воспроизведение. Что в этом контекст е можно сказать о семени? Не всякое семя проявляет признаки жизни. Однако, находясь в покое, оно содержит тот потенциал , который получило от несомненно живой субстанции и который при определенных условиях может реализоваться. В то же время семя можно необратимо разрушить, и тогда потенциал останется нереализованным. В этом плане вирус больше напоминает семя, чем живую клетку: у него есть некие возможности, которые могут и не осуществиться, однако нет способности к автономному существованию.

Можно также рассматривать живое и как состояние, в которое при определенных условиях переходит система, состоящая из неживых компонентов, обладающих определенными свойствами. В качестве примера подобных сложных (эмерджентных) систем можно привести жизнь и сознание. Чтобы достичь соответствующего статуса, у них должен быть определенный уровень сложности. Так, нейрон (сам по себе или даже в составе нейрон ной сети) не обладает сознанием, для этого необходим мозг. Но и интактный мозг может быть живым в биологическом смысл е и в то же время не обеспечивать сознание. Точно так же ни клеточные, ни вирусные гены или белки сами по себе не служат живой субстанцией, а клетка, лишенная ядра, сходна с обезглавленным человеком, поскольку не имеет критического уровня сложности. Вирус тоже не способен достичь подобного уровня. Так что жизнь можно определить как некое сложное эмерджентное состояние, включающее такие же основополагающие "строительные блоки", которыми обладает и вирус. Если следовать такой логике, то вирусы, не являясь живыми объектами в строгом смысл е этого слова, все же не могут быть отнесены к инертным системам: они находятся на границе между живым и неживым.

РЕПЛИКАЦИЯ ВИРУСА
Вирусы, бесспорно, обладают свойством, присущим всем живым организмам, - способностью к воспроизведению, хотя и при непременном участии клетки-хозяина. На рисунке изображена репликация вируса, геном которого - двухцепочечная ДНК. Процесс репликации фагов (вирусов, инфицирующих бактерий, не содержащих ядра), РНК-вирусов и ретровирусов отличается от приведенного здесь лишь в деталях.

Вирусы и эволюция

У вирусов есть своя, очень длинная эволюционная история, восходящая к истокам возникновения одноклеточных организмов. Так, некоторые вирусные системы репарации, которые обеспечивают вырезание неправильных оснований из ДНК и ликвидацию повреждений, возникших под действием радикалов кислорода, и т.д., есть только у отдельных вирусов и существуют в неизменном виде миллиарды лет.

Исследователи не отрицают, что вирусы играли какую-то роль в эволюции. Но, считая их неживой материей, они ставят их в один ряд с такими факторами, как климатические условия. Такой фактор воздействовал на организмы, которые обладали изменяющимися, генетически детерминируемыми признаками, извне. Организмы, более стойкие к этому влиянию, успешно выживали, размножались и передавали свои гены следующим поколениям.

Однако в действительности вирусы воздействовали на генетический материал живых организмов не опосредованно, а самым что ни на есть прямым образом - они обменивались с ним своими ДНК и РНК, т.е. были игроками на биологическом поле. Большим сюрпризом для врачей и биологов-эволюционистов стало то, что большая часть вирусов оказалась вполне безобидными созданиями, не связанными ни с какими болезнями. Они спокойно дремлют внутри клеток-хозяев или используют их аппарат для своего неспешного воспроизведения без всякого ущерба для клетки. У таких вирусов есть масса ухищрений, позволяющих им избежать недремлющего ока иммунной системы клетки - для каждого этапа иммунного ответа у них заготовлен ген, который этот этап контролирует или видоизменяет в свою пользу.

Более того, в процессе совместного проживания клетки и вируса вирусный геном (ДНК или РНК) "колонизирует" геном хозяйской клетки, снабжая его все новыми и новыми генами, которые в итоге становятся неотъемлемой частью геном а данного вида организмов. Вирусы оказывают более быстрое и прямое действие на живые организмы, чем внешние факторы, которые осуществляют отбор генетических вариантов. Многочисленность популяций вирусов вкупе с их высокой скоростью репликации и высокой частотой мутаций превращает их в основной источник генетических инноваций, постоянно создающий новые гены. Какой-нибудь уникальный ген вирусного происхождения, путешествуя, переходит от одного организма к другому и вносит вклад в эволюционный процесс.

Клетка, у которой уничтожена ядерная ДНК, - настоящий "покойник": она лишена генетического материала с инструкциями о деятельности. Но вирус может использовать для своей репликации оставшиеся целыми компоненты клетки и цитоплазму. Он подчиняет себе клеточный аппарат и заставляет его использовать вирусные гены как источник инструкций для синтеза вирусных белков и репликации вирусного геном а. Уникальная способность вирусов развиваться в погибших клетках наиболее ярко проявляется, когда хозяевами служат одноклеточные организмы, прежде всего населяющие океаны. (Подавляющее число вирусов обитает на суше. По оценкам специалистов, в Мировом океане насчитывается не более 1030 вирусных частиц.)

Бактерии, фотосинтезирующие цианобактерии и водоросли, потенциал ьные хозяева морских вирусов, нередко погибают под действием ультрафиолетового излучения, которое разрушает их ДНК. При этом некоторые вирусы ("постояльцы" организмов) включают механизм синтеза ферментов, которые восстанавливают поврежденные молекулы хозяйской клетки и возвращают ее к жизни. Например, цианобактерии содержат фермент, который участвует в фотосинтезе, и под действием избыточного количества света иногда разрушается, что приводит к гибели клетки. И тогда вирусы под названием цианофаги "включают" синтез аналога бактериального фотосинтезирующего фермента, более устойчивого к УФ-излучению. Если такой вирус инфицирует только что погибшую клетку, фотосинтезирующий фермент может вернуть последнюю к жизни. Таким образом, вирус играет роль "генного реаниматора".

Избыточные дозы УФ-излучения могут привести к гибели и цианофагов, однако иногда им удается вернуться к жизни при помощи множественной репарации. Обычно в каждой хозяйской клетке присутствует несколько вирусов, и в случае их повреждения они могут собрать вирусный геном по частям. Различные части геном а способны служить поставщиками отдельных генов, которые совместно с другими генами восстановят функции геном а в полном объеме без создания целого вируса. Вирусы - единственные из всех живых организмов, способные, как птица Феникс, возрождаться из пепла.

По данным Международного консорциума по секвенированию геном а человека, от 113 до 223 генов, имеющихся у бактерий и человека, отсутствуют у таких хорошо изученных организмов, как дрожжи Sacharomyces cerevisiae, плодовая мушка Drosophila melanogaster и круглый червь Caenorhabditis elegans, которые находятся между двумя крайними линиями живых организмов. Одни ученые полагают, что дрожжи, плодовая мушка и круглый червь, появившиеся после бактерий, но до позвоночных, просто утратили соответствующие гены в какой-то момент своего эволюционного развития. Другие же считают, что гены были переданы человеку проникшими в его организм бактериями.

Вместе с коллегами из Института вакцин и генной терапии при Орегонском университете здравоохранения мы предполагаем, что существовал третий путь: исходно гены имели вирусное происхождение, но затем колонизировали представителей двух разных линий организмов, например бактерий и позвоночных. Ген, которым одарила человечество бактерия, мог быть передан двум упомянутым линиям вирусом.

Более того, мы уверены, что само клеточное ядро имеет вирусное происхождение. Появление ядра (структуры, имеющейся только у эукариот, в том числе у человека, и отсутствующей у прокариот, например у бактерий) нельзя объяснить постепенной адаптацией прокариотических организмов к изменяющимся условиям. Оно могло сформироваться на основе предсуществующей высокомолекулярной вирусной ДНК, построившей себе постоянное "жилище" внутри прокариотической клетки. Подтверждением этому служит факт, что ген ДНК-полимеразы (фермента, участвующего в репликации ДНК) фага Т4 (фагами называют вирусы, которые инфицируют бактерии) по своей нуклеотидной последовательности близок к генам ДНК-полимераз как эукариот, так и инфицирующих их вирусов. Кроме того, Патрик Фортере (Patrick Forterre) из Южного парижского университета, который исследовал ферменты, участвующие в репликации ДНК, пришел к выводу, что гены, детерминирующие их синтез у эукариот, имеют вирусное происхождение.

Вирус синего языка

Вирусы влияют абсолютно на все формы жизни на Земле, а часто и определяют их судьбу. При этом они тоже эволюционируют. Прямым доказательством служит появление новых вирусов, таких как вирус иммунодефицита человека (ВИЧ), вызывающий СПИД.

Вирусы постоянно видоизменяют границу между биологическим и биохимическим мирами. Чем дальше мы будем продвигаться в исследовании геном ов различных организмов, тем больше будем обнаруживать свидетельств присутствия в них генов из динамичного, очень древнего пула. Лауреат Нобелевской премии Сальвадор Лурия (Salvador Luria) в 1969 г. так говорил о влиянии вирусов на эволюцию: "Возможно, вирусы с их способностью включаться в клеточный геном и покидать его были активными участниками процесса оптимизации генетического материала всех живых существ в ходе эволюции. Просто мы этого не заметили". Независимо от того, к какому миру - живому или неживому - мы будем относить вирусы, пришло время рассматривать их не изолированно, а с учетом постоянной связи с живыми организмами.

ОБ АВТОРЕ:
Луис Вилляреал
(Luis P. Villarreal) - директор Центра по изучению вирусов при Калифорнийском университете в г. Ирвайн. Получил степень кандидата биологических наук в Калифорнийском университете в Сан-Диего, затем работал в Стэнфордском университете в лаборатории лауреата Нобелевской премии Пола Берга. Активно занимается педагогической деятельностью, в настоящее время участвует в разработке программ по борьбе с угрозой биотерроризма.


Первый шаг в ответ на вопрос являются ли вирусы живыми или мертвыми, водится к определению критериев живого и неживого. Давайте сравним вирусы с 7 критериями, которые исследователи установили, чтобы определить, жив или нет.

1. Живые существа должны поддерживать гомеостаз.
Гомеостаз — саморегуляция, способность системы сохранять постоянство своего внутреннего состояния. Может ли вирус контролировать свою внутреннюю температуру или ее внутреннее содержимое?
Ранее среди критериев жизни было — живые существа должны быть сделаны из клеток. Вирусы не состоят из клеток. Одна вирусная частица известна как вирион и состоит из набора генов, заключенных в защитную белковую оболочку, называемую капсидом. Некоторые вирусы имеют дополнительную мембрану (липидный биослой), окружающую ее, называемую оболочкой. У вирусов нет ядер, органелл или цитоплазмы, подобных клеткам, и поэтому у них нет способа контролировать или создавать изменения в их внутренней среде.
Возникает вопрос — может ли индивидуальный вирион самостоятельно поддерживать устойчивую внутреннюю среду. Хотя некоторые утверждают, что капсид и оболочка помогают вирионам противостоять изменениям в их состоянии. Существует общее соглашение, что вирусы не выдерживают это первое требование.
Тем не менее, очень немногие вещи в биологии не черно-белые, поэтому давайте посмотрим, как вирусы справляются с остальной частью списка, прежде чем принимать окончательное решение.
Вердикт: не соответствует условию

2. Живые существа имеют разные уровни организации.
Жизнь сложна, и живые организмы отражают эту сложность в своей структуре. Маленькие строительные блоки объединяются, чтобы сделать более крупный объект. Вирусы, безусловно, это делают. Они имеют гены, полученные из нуклеиновых кислот, и капсид, изготовленный из небольших субъединиц, называемых капсомерами.
Вердикт: Соответствует

3. Живые организмы воспроизводятся.
Один из основных законов в природе заключается в том, что вид передает свою генетическую информацию. Вирусы определенно размножаются. Хотя наша иммунная система, безусловно, может справиться с одним вирионом, но сотни тысяч вирионов, созданных за короткий промежуток времени, наверняка навредят нашим клеткам. Вирусы должны использовать клетки хозяина для производства большего количества вирионов. Поскольку у вирусов нет органелл, ядер или даже рибосом, у них нет инструментов, необходимых для копирования их генов, а тем более для создания новых вирионов. Вирусы попадают в живые клетки, захватывают контроль в клетке, чтобы начать производить новые вирусные частицы, построить новые капсиды и собрать все вместе. Обычно мы используем термин «репликация», а не размножение, чтобы указать, что вирусам нужна клетка-хозяин для умножения своего числа.
Вердикт: Может быть

4. Живые существа растут.
Живые существа растут. Они используют энергию и питательные вещества, чтобы стать крупнее и сложнее. Вирусы манипулируют клетками-хозяевами для создания новых вирусов, что означает, что каждый вирион создается в полностью сформированном состоянии и не будет увеличиваться по размеру и по сложности на протяжении всего существования. Вирусы не растут.
Вердикт: не соответствует

5. Живые существа используют энергию.
Этот критерий несколько сложный. Создание новых единиц вириона является одним из основных задач — от создания нуклеиновых кислот до производства капсидов — все это требует больших затрат энергии. Однако вся энергия, которая входит в эту конструкцию, исходит, как вы догадались, от хозяина. Вирусы определенно рассчитывают на метаболизм хозяина, стремяться добраться до него (возможно, это вампиры?).
Вердикт: Может быть

6. Живые существа реагируют на раздражители.
Независимо от того, реагируют ли вирусы на окружающую среду, это один из самых сложных вопросов. Ответ на стимул определяется почти немедленной реакцией на некоторое изменение окружающей среды. Хотя они не изменяют поведение в ответ на прикосновение или звук или свет, как это делают люди, бактерии или морские губки, не было проведено достаточно исследований, чтобы окончательно сказать, что вирусы ни на что не реагируют.
Вердикт: Неизвестно

7. Живые существа адаптируются к окружающей их среде.
Адаптация и эволюция происходят за счет непреднамеренных изменений (мутаций), которые выгодны для всего вида. Вирусы определенно приспосабливаются к их окружению. В отличие от предыдущего требования, требующего немедленного ответа, адаптация — это процесс, который происходит со временем. Вирус может жить в двух разных фазах — литической фазе (где вирус активно реплицируется в клетке-хозяине) и лизогенной фазе (где вирусная ДНК входит в ДНК клетки кратно всякий раз, когда клетка размножается). Иногда у хозяина не хватает энергии или расходных материалов, чтобы поддерживать вирус для активной репликации, поэтому он переключится на лизогенную фазу. Вирус может в конечном итоге вернуться в литическую фазу, когда будут подходящие условия.
Вердикт: Подходит

Статью перевела докт.вет-х наук Эйнгор М.А.

Согласно Львову, “организм - некая независимая единица интегрированных и взаимосвязанных структур и функций”. У простейших, то есть у одноклеточных именно клетка является независимой единицей, иными словами, организмом. И клеточные организмы - митохондрии, хромосомы и хлоропласты - это не организмы, ибо они не являются независимыми. Получается, что если следовать определению, данным Львовым, вирусы не являются организмами, так как не обладают независимостью: для выращивания и репликации генетического материала нужна живая клетка.

В то же время, у многоклеточных видов независимо от того, животные или растения, отдельные линии клеток не могут эволюционировать независимо друг от друга; следовательно, их клетки не являются организмами. Для того чтобы изменение было эволюционно значимым, оно должно быть передано новому поколению индивидуумов. В соответствии с этим рассуждением организм представляет собой элементарную единицу некоторого непрерывного ряда со своей индивидуальной эволюционной историей

И в то же время, можно рассматривать данную проблему с точки зрения другого определения: материал является живым если, будучи изолированным, он сохраняет свою специфическую конфигурацию так, что эта конфигурация может быть реинтегрирована, то есть вновь включена в цикл, в котором участвует генетическое вещество: это отождествляет жизнь с наличием независимого специфического самореплицирующегося способа организации. Специфическая последовательность оснований нуклеиновой кислоты того или иного гена может копироваться; ген - это некая часть запасов информации, которой располагает живой организм. В качестве теста на живое данное выше определение предлагает воспроизведение в различных клеточных линиях и в ряде поколей организмов. Вирус, согласно этому тесту, живой точно так же, как и любой другой фрагмент генетического материала, что его можно извлечь из клетки, вновь ввести в живую клетку и что при этом он будет копироваться в ней и станет хотя бы на некоторое время часть ее наследственного аппарата. При этом передача вирусного генома составляет основной смысл существования этих форм - результат их специализации в процессе отбора. Поэтому специализированность вирусов как переносчиков нуклеиновых кислот дает возможность считать вирусы “более живыми”, чем какие либо фрагменты генетического материала, и “более организмами”, чем любые клеточные органеллы, включая хромосомы и гены.

Строгие постулаты Коха

Каковы же те основные положения, сформулированные Робертом Кохом (1843-1910), которых должен придерживаться микробиолог при каждом обнаружении неизвестного возбудителя? Что может служить доказательством, что именно он является причиной данного инфекционного заболевания? Вот эти три критерия:

Неоднократное получение чистой культуры возбудителя, взятого из организма больного.

Возникновение точно такого же или сходного заболевания (как по характеру течения, так и по вызываемым им патологическим изменениям) при инфицировании здорового организма культурой предполагаемого возбудителя.

Появление в организме человека или животного после их заражения данным возбудителем всегда одних и тех же специфических защитных веществ. При контакте иммунной сыворотки крови с возбудителем из культуры последний должен терять свои патогенные свойства.

Для современной вирусологии характерно бурное развитие и широкое применение самых различных методик - как биологических (включая генетические), так и физико-химических.. Они используются при установлении новых, до сих пор еще неизвестных вирусов, и при изучении биологических свойств и строения уже обнаруженных видов.

Фундаментальные теоретические исследования дают обычно важные сведения, которые используются в медицине, в области диагностики или при глубоком анализе процессов вирусной инфекции. Введение новых действенных методов вирусологии связано, как правило, с выдающимися открытиями.

Так например, метод выращивания вирусов в развивающемся курином эмбрионе, впервые примененный А.М.Вудрофом и Е.Дж.Гудпэсчуром в 1931 году, был с исключительным успехом использован при изучении вируса гриппа.

Прогресс физико-химических методов, в частности метода центрифугирования, привел в 1935 году к возможности кристалмуации вируса табачной мозаики (ВТМ) из сока больных растений, а в последствии и к установлению входящих в его состав белков. Этим был дан первый толчок к изучению строения и биохимии вирусов.

В 1939 году А. В. Арден и Г. Руска впервые применили для изучения вирусов электронный микроскоп. Введение этого аппарата в практику означало исторический перелом в вирусологических исследованиях,поскольку появилась возможность увидеть - хотя в те годы еще и недостаточно четко - отдельные частицы вируса, вирионы.

В 1941 году Г.Херст установил, что вирус гриппа при известных условиях вызывает агглютинацию (склеивание и выпадение в осадок) красных кровяных телец (эритроцитов). Этим была положена основа для изучения взаимоотношений между поверхностными структурами вируса и эритроцитов, а также для разработки одного из наиболее эффективных методов диагностики.

Коренной перелом и вирусологических исследованиях произошел в 1949 г., когда Дж. Эндерсу, Т. Уэллеру и Ф. Роббинсу удалось размножить вирус полиомиелита в клетках кожи и мышц человеческого зародыша. Они добились разрастания кусочков ткани на искусственной питательной среде. Клеточные (тканевые) культуры были инфицированы вирусом полиомиелита, который до этого изучали исключительно на обезьянах и лишь очень редко на особом виде крыс.

Вирус в человеческих клетках, выращенных вне материнского организма, хорошо размножался и вызывал характерные патологические изменения. Метод культуры клеток (длительное сохранение и выращивание в искусственных питательных средах клеток, выделенных из организма человека и животных) был впоследствии усовершенствован и упрощен многими исследователями и стал, наконец, одним из наиболее важных и результативных для культивирования вирусов. Благодаря этому более доступному и дешевому методу появилась возможность получать вирусы в относительно чистом виде, чего нельзя было достичь в суспензиях из органов погибших животных. Введение нового метода означало несомненный прогресс не только в диагностике вирусных заболеваний, но и в получении прививочных вакцин. Он дал также неплохие результаты и в биологических и биохимических исследованиях вирусов.

В 1956 году удалось показать, что носителем инфекционности вируса является содержащаяся в нем нуклеиновая кислота. А в 1957 году А.Айзекс и Дж.Линдеман открыли интерферон, который позволил объяснить многие биологические явления, наблюдаемые в отношениях между вирусом и клеткой - хозяином или организмом - хозяином.

С. Бреннер и Д. Хорн ввели в технику электронной микроскопии метод негативного контрастного окрашивания, сделавший возможным изучение тонкого строения вирусов, в частности их структурных элементов (субъединиц).

В 1964 году уже упоминавшийся нами ранее американский вирусолог Гайдузек с сотрудниками доказал инфекционный характер ряда хронических заболеваний центральной нервной системы человека и животных. Он изучал недавно обнаруженные своеобразные вирусы, лишь в некоторых чертах схожие с ранее известными.

В то же время американский генетик Барух Бламберг обнаруживает (в процессе генетических исследований белков крови) антиген сывороточного гепатита (австралийский антиген), вещество, идентифицируемое при помощи серологических тестов. Этому антигену суждено было сыграть большую роль в вирусологических исследованиях гепатита.

В последние годы одним из крупнейших успехов вирусологии можно считать раскрытие некоторых молекулярно-биологических механизмов превращения нормальных клеток в опухолевые. Не меньшие успехи были достигнуты и в области изучения строения вирусов и их генетики.

Инфекционная единица

Наименьшее количество вируса, способное в данном опыте вызвать инфекцию, называется инфекционной единицей.

Для ее определения применяются обычно два метода. Первый основан на определении 50 %-ной летальной дозы, которая обозначается LD 50 (от лат. Letatis - смертельная, dosis - доза). Второй метод устанавливает число инфекционных единиц по числу бляшек, образовавшихся в культуре клеток.

Что, в сущности, представляет собой величина LD 50 и как она определяется? Исследуемый вирусный материал разводится в соответствии со снижающимися степенями концентрации, скажем кратными десяти: 1:10; 1:100; 1:1000 и т.д. Каждым из растворов с указанными концентрациями вируса инфицируют группу животных (десять индивидуумов) или культуру клеток в пробирках. Потом наблюдают гибель животных или изменения, происшедшие в культуре под влиянием вируса. Статистическим методом определяется степень концентрации, способная умертвить 50 % животных из числа зараженных исходным материалом. При использовании культуры клеток следует найти такую дозу вируса, которая производит губительное действие на 50 % инфицированных ею культур. В этом случае употребляется сокращение ЦПД 50 (цитопатическая доза). Иначе говоря, речь идет о такой дозе вируса, которая вызывает повреждение или гибель половины инфицированных ею культур.

Медицина. Здоровье. Рак. Онкология. Болезни. Лечение. Инфекции. Вирусы. Вирус иммунодефицита человека.


О наиболее частых причинах иммунных нарушений Вы можете узнать на странице «ПРИЧИНЫ ИММУНОПАТОЛОГИЙ ».
О современных методах организации лечения у детей и взрослых различных иммунопатологий и связанных с ними заболеваний (аллергий, иммунодефицитов, диатезов, дисбактериозов, бронхитов, дерматитов, различных бактериальных и вирусных инфекций) смотрите на странице «ДИАГНОСТИКА И ЛЕЧЕНИЕ ».
С перечислением заболеваний, связанных с нарушениями иммунного статуса, вы можете ознакомиться на странице «СПИСОК ЗАБОЛЕВАНИЙ ».

Роль иммунопатологий
в развитии вирусных заболеваний
у детей и взрослых

В настоящее время лекарств против вирусов, т.е. веществ, эффективно убивающих или блокирующих в заболевшем организме непосредственно сами вирусы, не только не существует, но даже теоретически не просматривается возможность их появления в обозримом будущем.

При лечении вирусных заболеваний, основной причиной которых являются те или иные иммунодефицитные состояния больных, используются различные методы, стимулирующие собственные защитные механизмы организма, что не во всех случаях достаточно эффективно на фоне уже имеющегося иммунопатологического состояния. Поэтому вирусные заболевания представляют существенную опасность для значительной части людей, страдающих иммунодефицитами. Ведь только в ХХ-ом веке только от черной оспы (пока с ней не покончили с помощью массовых вакцинаций в 1982 г) погибло 280 миллионов человек. Но при всех возникавших эпидемиях самых разных болезней всегда было много людей, которые без всякой защиты с начала до конца эпидемии работали непосредственно с больными и при этом сами оставались здоровыми.

С вирусными заболеваниями может справиться только иммунная защита организма , которая опознает появившиеся клетки с измененной генетикой и уничтожает их, не позволяя продуцировать вирионы. Вирусы распространены повсеместно и постоянно атакуют все живые существа. Поэтому в организме здорового человека каждую секунду опознается и уничтожается около 3-х тысяч пораженных клеток - иммунные реакции непрерывно круглосуточно борются за сохрание жизнеспособности в окружающей среде, обеспечивая защиту от множества неизбежно проникающих в организм различных видов патогенной микрофлоры.

Нарушения функционирования иммунной защиты человека, при которых организм недостаточно эффективно опознает клетки с измененной (чужой по отношению к данному организму) генетикой, приводят к бесконтрольному увеличению количества пораженных клеток и развитию вирусных и других инфекционных заболеваний, а в более тяжелых случаях и к развитию онкологических процессов, при которых также характерно бесконтрольное размножение клеток с измененным генетическим аппаратом (раковых клеток). Поэтому длительно протекающие или протекающие в тяжелой форме вирусные заболевания рассматриваются в современной медицине как предраковые состояния .

О вирусах

В течение последних 100 лет ученые не раз меняли свое представление о природе вирусов, микроскопических переносчиков болезней. Проблема заключается в том, что вирусы очень малы по сравнению с бактериями и, в большинстве случаев, не могут наблюдаться в оптический микроскоп. Только появление в 1950-х годах электронной микроскопии позволило непосредственно изучать структуру вирусов. (Любопытно, что электронный микроскоп изобрел тот же человек, который в 1930-х заложил теоретические и технические основы и создал всю структуру современного телевидения - американец русского происхождения Владимир Кузьмич Зворыкин - 1888-1982 г.г.)

Вначале вирусы считали ядовитыми веществами, затем - одной из форм жизни, потом - биохимическими соединениями. Сегодня предполагают, что они существуют между живым и неживым мирами и являются основными участниками эволюции как переносчики межвидовой генетической информации , генетически связывая все живое в единое развивающееся целое - биосферу Земли. Подавляющее большинство вирусов совершенно безвредно для человека .

В конце XIX века было установлено, что некоторые болезни, в том числе бешенство и ящур, вызывают частицы, похожие на бактерии, но гораздо более мелкие. Поскольку они имели биологическую природу и передавались от одной жертвы к другой, вызывая одинаковые симптомы, вирусы стали рассматривать как мельчайшие живые организмы, несущие генетическую информацию.

Низведение вирусов до уровня безжизненных химических объектов произошло после 1935 г., когда Уэнделл Стэнли (Wendell Stanley) впервые получил вирус табачной мозаики в кристаллической форме. Обнаружилось, что кристаллы состоят из сложных биохимических компонентов и не обладают необходимым для биологических систем свойством - метаболической активностью. В 1946 г. ученый получил за эту работу Нобелевскую премию по химии, а не по физиологии или медицине.

Дальнейшие исследования Стэнли четко показали, что любой вирус состоит из нуклеиновой кислоты (ДНК или РНК), упакованной в белковую оболочку. Помимо защитных белков у некоторых из них есть специфические вирусные белки, участвующие в инфицировании клетки. Если судить о вирусах только по этому описанию, то они действительно больше похожи на химические субстанции, чем на живой организм. Но когда вирус проникает в клетку (после чего ее называют клеткой-хозяином), картина меняется. Он сбрасывает белковую оболочку и подчиняет себе весь клеточный аппарат, заставляя его синтезировать вирусные ДНК или РНК и вирусные белки в соответствии с инструкциями, записанными в его геноме. Далее происходит самосборка вируса из этих компонентов и появляется новая вирусная частица, готовая инфицировать другие клетки.

Такая схема заставила многих ученых по-новому взглянуть на вирусы. Их стали рассматривать как объекты, находящиеся на границе между живым и неживым мирами. По словам вирусологов Марка ван Регенмортеля (M.H.V. van Regenmortel) из Страсбургского университета во Франции и Брайана Махи (B.W. Mahy) из центров по профилактике заболеваний и контролю за их распространением, такой способ существования можно назвать "жизнью взаймы". Интересен следующий факт: при том, что долгое время биологи рассматривали вирус как "белковую коробку", наполненную химическими деталями, они использовали его способность к репликации в хозяйской клетке для изучения механизма кодирования белков. Современная молекулярная биология во многом обязана своими успехами информации, полученной при изучении вирусов.

Вирус иммунодефицита человека

Ученые кристаллизовали большинство клеточных компонентов (рибосомы, митохондрии, мембранные структуры, ДНК, белки) и сегодня рассматривают их либо как "химические машины", либо как материал, который эти машины используют или производят. Подобный взгляд на сложные химические структуры, обеспечивающие жизнедеятельность клетки, и стал причиной не слишком большой озабоченности молекулярных биологов статусом вирусов. Исследователи интересовались ими только как агентами, способными использовать клетки в своих целях или служить источником инфекции. Более сложная проблема, касающаяся вклада вирусов в эволюцию, остается для большинства ученых несущественной.

Живой или неживой?

Что означает слово "живой"? Большинство ученых сходятся во мнении, что помимо способности к самовоспроизведению живые организмы должны обладать и другими свойствами. Например, жизнь любого существа всегда ограничивается во времени - оно рождается и умирает. Кроме того, живые организмы имеют определенную степень автономии в биохимическом смысле, т.е. в какой-то мере полагаются на собственные метаболические процессы, обеспечивающие их веществами и энергией, которые и поддерживают их существование.

Камень, равно как и капелька жидкости, в которой протекают метаболические процессы, но которая не содержит генетического материала и не способна к самовоспроизведению, несомненно, неживой объект. Бактерия же - живой организм, и хотя она состоит всего из одной клетки, она может вырабатывать энергию и синтезировать вещества, обеспечивающие ее существование и воспроизведение. Что в этом контексте можно сказать о семени? Не всякое семя проявляет признаки жизни. Однако, находясь в покое, оно содержит тот потенциал, который получило от несомненно живой субстанции и который при определенных условиях может реализоваться. В то же время семя можно необратимо разрушить, и тогда потенциал останется нереализованным. В этом плане вирус больше напоминает семя, чем живую клетку: у него есть некие возможности, которые могут и не осуществиться, однако нет способности к автономному существованию.

Можно также рассматривать живое и как состояние, в которое при определенных условиях переходит система, состоящая из неживых компонентов, обладающих определенными свойствами. В качестве примера подобных сложных (эмерджентных) систем можно привести жизнь и сознание. Чтобы достичь соответствующего статуса, у них должен быть определенный уровень сложности. Так, нейрон (сам по себе или даже в составе нейронной сети) не обладает сознанием, для этого необходим мозг. Но и интактный мозг может быть живым в биологическом смысле и в то же время не обеспечивать сознание. Точно так же ни клеточные, ни вирусные гены или белки сами по себе не служат живой субстанцией, а клетка, лишенная ядра, сходна с обезглавленным человеком, поскольку не имеет критического уровня сложности. Вирус тоже не способен достичь подобного уровня. Так что жизнь можно определить как некое сложное эмерджентное состояние, включающее такие же основополагающие "строительные блоки", которыми обладает и вирус. Если следовать такой логике, то вирусы, не являясь живыми объектами в строгом смысле этого слова, все же не могут быть отнесены к инертным системам: они находятся на границе между живым и неживым.

РЕПЛИКАЦИЯ ВИРУСА

Вирусы, бесспорно, обладают свойством, присущим всем живым организмам, - способностью к воспроизведению, хотя и при непременном участии клетки-хозяина. На рисунке изображена репликация вируса, геном которого - двухцепочечная ДНК. Процесс репликации фагов (вирусов, инфицирующих бактерий, не содержащих ядра), РНК-вирусов и ретровирусов отличается от приведенного здесь лишь в деталях.

Вирусы и эволюция

У вирусов есть своя, очень длинная эволюционная история, восходящая к истокам возникновения одноклеточных организмов. Так, некоторые вирусные системы репарации, которые обеспечивают вырезание неправильных оснований из ДНК и ликвидацию повреждений, возникших под действием радикалов кислорода, и т.д., есть только у отдельных вирусов и существуют в неизменном виде миллиарды лет.

Исследователи не отрицают, что вирусы играли какую-то роль в эволюции. Но, считая их неживой материей, они ставят их в один ряд с такими факторами, как климатические условия. Такой фактор воздействовал на организмы, которые обладали изменяющимися, генетически детерминируемыми признаками, извне. Организмы, более стойкие к этому влиянию, успешно выживали, размножались и передавали свои гены следующим поколениям.

Однако в действительности вирусы воздействовали на генетический материал живых организмов не опосредованно, а самым что ни на есть прямым образом - они обменивались с ним своими ДНК и РНК, т.е. были игроками на биологическом поле. Большим сюрпризом для врачей и биологов-эволюционистов стало то, что большая часть вирусов оказалась вполне безобидными созданиями, не связанными ни с какими болезнями. Они спокойно дремлют внутри клеток-хозяев или используют их аппарат для своего неспешного воспроизведения без всякого ущерба для клетки. У таких вирусов есть масса ухищрений, позволяющих им избежать недремлющего ока иммунной системы клетки - для каждого этапа иммунного ответа у них заготовлен ген, который этот этап контролирует или видоизменяет в свою пользу.

Более того, в процессе совместного проживания клетки и вируса вирусный геном (ДНК или РНК) "колонизирует" геном хозяйской клетки, снабжая его все новыми и новыми генами, которые в итоге становятся неотъемлемой частью генома данного вида организмов. Вирусы оказывают более быстрое и прямое действие на живые организмы, чем внешние факторы, которые осуществляют отбор генетических вариантов. Многочисленность популяций вирусов вкупе с их высокой скоростью репликации и высокой частотой мутаций превращает их в основной источник генетических инноваций, постоянно создающий новые гены. Какой-нибудь уникальный ген вирусного происхождения, путешествуя, переходит от одного организма к другому и вносит вклад в эволюционный процесс.

ВЕЧНО ЖИВЫЕ

Вирусы, занимающие промежуточное положение между живым и неживым, проявляют неожиданные свойства. Вот одно из них. Обычно вирусы реплицируются только в живых клетках, но способны расти и в погибших клетках, а иногда даже возвращают последних к жизни. Как ни удивительно, но некоторые вирусы, будучи разрушенными, могут возродиться к "жизни взаймы".

Клетка, у которой уничтожена ядерная ДНК, - настоящий "покойник": она лишена генетического материала с инструкциями о деятельности. Но вирус может использовать для своей репликации оставшиеся целыми компоненты клетки и цитоплазму. Он подчиняет себе клеточный аппарат и заставляет его использовать вирусные гены как источник инструкций для синтеза вирусных белков и репликации вирусного генома. Уникальная способность вирусов развиваться в погибших клетках наиболее ярко проявляется, когда хозяевами служат одноклеточные организмы, прежде всего населяющие океаны. (Подавляющее число вирусов обитает на суше. По оценкам специалистов, в Мировом океане насчитывается не более 1030 видов вирусных частиц.)

Вирус табачной мозаики

Бактерии, фотосинтезирующие цианобактерии и водоросли, потенциальные хозяева морских вирусов, нередко погибают под действием ультрафиолетового излучения, которое разрушает их ДНК. При этом некоторые вирусы ("постояльцы" организмов) включают механизм синтеза ферментов, которые восстанавливают поврежденные молекулы хозяйской клетки и возвращают ее к жизни. Например, цианобактерии содержат фермент, который участвует в фотосинтезе, и под действием избыточного количества света иногда разрушается, что приводит к гибели клетки. И тогда вирусы под названием цианофаги "включают" синтез аналога бактериального фотосинтезирующего фермента, более устойчивого к УФ-излучению. Если такой вирус инфицирует только что погибшую клетку, фотосинтезирующий фермент может вернуть последнюю к жизни. Таким образом, вирус играет роль "генного реаниматора".

Избыточные дозы УФ-излучения могут привести к гибели и цианофагов, однако иногда им удается вернуться к жизни при помощи множественной репарации. Обычно в каждой хозяйской клетке присутствует несколько вирусов, и в случае их повреждения они могут собрать вирусный геном по частям. Различные части генома способны служить поставщиками отдельных генов, которые совместно с другими генами восстановят функции генома в полном объеме без создания целого вируса. Вирусы - единственные из всех живых организмов, способные, как птица Феникс, возрождаться из пепла.

По данным Международного консорциума по секвенированию генома человека, от 113 до 223 генов, имеющихся у бактерий и человека, отсутствуют у таких хорошо изученных организмов, как дрожжи Sacharomyces cerevisiae, плодовая мушка Drosophila melanogaster и круглый червь Caenorhabditis elegans, которые находятся между двумя крайними линиями живых организмов. Одни ученые полагают, что дрожжи, плодовая мушка и круглый червь, появившиеся после бактерий, но до позвоночных, просто утратили соответствующие гены в какой-то момент своего эволюционного развития. Другие же считают, что гены были переданы человеку проникшими в его организм бактериями.

Вместе с коллегами из Института вакцин и генной терапии при Орегонском университете здравоохранения мы предполагаем, что существовал третий путь: исходно гены имели вирусное происхождение, но затем колонизировали представителей двух разных линий организмов, например бактерий и позвоночных. Ген, которым одарила человечество бактерия, мог быть передан двум упомянутым линиям вирусом.

Более того, мы уверены, что само клеточное ядро имеет вирусное происхождение. Появление ядра (структуры, имеющейся только у эукариот, в том числе у человека, и отсутствующей у прокариот, например у бактерий) нельзя объяснить постепенной адаптацией прокариотических организмов к изменяющимся условиям. Оно могло сформироваться на основе предсуществующей высокомолекулярной вирусной ДНК, построившей себе постоянное "жилище" внутри прокариотической клетки. Подтверждением этому служит факт, что ген ДНК-полимеразы (фермента, участвующего в репликации ДНК) фага Т4 (фагами называют вирусы, которые инфицируют бактерии) по своей нуклеотидной последовательности близок к генам ДНК-полимераз как эукариот, так и инфицирующих их вирусов. Кроме того, Патрик Фортере (Patrick Forterre) из Южного парижского университета, который исследовал ферменты, участвующие в репликации ДНК, пришел к выводу, что гены, детерминирующие их синтез у эукариот, имеют вирусное происхождение.

Вирус синего языка

Вирусы влияют абсолютно на все формы жизни на Земле, а часто и определяют их судьбу. При этом они тоже эволюционируют. Прямым доказательством служит появление новых вирусов, таких как вирус иммунодефицита человека (ВИЧ), вызывающий СПИД.

Вирусы постоянно видоизменяют границу между биологическим и биохимическим мирами. Чем дальше мы будем продвигаться в исследовании геномов различных организмов, тем больше будем обнаруживать свидетельств присутствия в них генов из динамичного, очень древнего пула. Лауреат Нобелевской премии Сальвадор Лурия (Salvador Luria) в 1969 г. так говорил о влиянии вирусов на эволюцию: "Возможно, вирусы с их способностью включаться в клеточный геном и покидать его были активными участниками процесса оптимизации генетического материала всех живых существ в ходе эволюции. Просто мы этого не заметили". Независимо от того, к какому миру - живому или неживому - мы будем относить вирусы, пришло время рассматривать их не изолированно, а с учетом постоянной связи с живыми организмами.

В числе других использованы материалы Луиса Вилляреала (Luis P. Villarreal) - директора Центра по изучению вирусов при Калифорнийском университете в г. Ирвайн, опубликованные в журнале "В мире науки".

* * * * * * *

НОВЫЕ СООБЩЕНИЯ:

* * * * * * *

Что еще почитать