Понятие о напряжении тела в данной точке. Нормальные и касательные напряжения. Нормальные и касательные напряжения Как найти касательное напряжение

Как уже известно, внешние сосредоточенные (т. е. приложенные в точке) нагрузки реально не существуют. Они представляют собой статический эквивалент распределенной нагрузки.

Аналогично сосредоточенные внутренние силы и моменты, характеризующие взаимодействие между отдельными частями элемента (или между отдельными элементами конструкции), являются также лишь статическим эквивалентом внутренних сил, распределенных по площади сечения.

Эти силы, так же как и внешние нагрузки, распределенные по поверхности, характеризуются их интенсивностью, которая равна

где - равнодействующая внутренних сил на весьма малой площадке проведенного сечения (рис. 7.1, а).

Разложим силу на две составляющие: касательную АТ и нормальную , из которых первая расположена в плоскости сечения, а вторая перпендикулярна к этой плоскости.

Интенсивность касательных сил в рассматриваемой точке сечения называется касательным напряжением и обозначается (тау), а интенсивность нормальных сил - нормальным напряжением и обозначается (сигма). Напряжения выражаются формулами

Напряжения имеют размерность и т. д.

Нормальное и касательное напряжения являются составляющими полного напряжения в рассматриваемой точке по данному сечению (рис. 7.1, б). Очевидно, что

Нормальное напряжение в данной точке по определенному сечению характеризует интенсивность сил отрыва или сжатия частиц элемента конструкций, расположенных по обе стороны этого сечения, а касательное напряжение - интенсивность сил, сдвигающих эти частицы в плоскости рассматриваемого сечения. Величины напряжений а и в каждой точке элемента зависят от направления сечения, проведенного через эту точку.

Совокупность напряжений , действующих по различным площадкам, проходящим через рассматриваемую точку, представляет собой напряженное состояние в этой точке.

Нормальные и касательные напряжения имеют в сопротивлении материалов весьма важное значение, так как от их величин зависит прочность сооружения.

Нормальные и касательные напряжения в каждом поперечном сечении бруса связаны определенными зависимостями с внутренними усилиями, действующими в этом сечении. Для получения таких зависимостей рассмотрим элементарную площадку поперечного сечения F бруса с действующими по этой площадке нормальными а и касательными напряжениями (рис. 8.1). Разложим напряжения на составляющие параллельные соответственно осям у и . На площадку действуют элементарные силы параллельные соответственно осям Проекции всех элементарных сил (действующих на все элементарные площадки сечения F) на оси и их моменты относительно этих осей определяются выражениями

Напряжения характеризуются числовым значением и направлением, т. е. напряжение представляет собой вектор, наклоненный под тем или иным углом к рассматриваемому сечению.

Пусть в точке М какого-либо сечения тела по некоторой малой площадке A действует сила F под некоторым углом к площадке (рис. 63, а). Поделив эту силу F на площадь А, найдем возникающее в точке М среднее напряжение (рис. 63, б):

Истинные напряжения в точке М определяются при переходе к пределу

Векторная величина р называется полным напряжением в точке.

Полное напряжение р можно разложить на составляющие: по нормали (перпендикуляру) к площадке А и по касательной к ней (рис, 63, в).

Составляющую напряжения по нормали называют нормальным напряжением в данной точке сечения и обозначают греческой буквой (сигма); составляющую по касательной называют касательным напряжением и обозначают греческой буквой (тау).

Нормальное напряжение, направленное от сечения, считают положительным, направленное к сечению - отрицательным.

Нормальные напряжения возникают, когда под действием внешних сил частицы, расположенные по обе стороны от сечения, стремятся удалиться одна от другой или сблизиться. Касательные напряжения возникают, когда частицы стремятся сдвинуться одна относительно другой в плоскости сечения.

Касательное напряжение можно разложить по координатным осям на две составляющие и (рис.1.6, в). Первый индекс при показывает, какая ось перпендикулярна сечению, второй - параллельно какой оси действует напряжение. Если в расчетах направление касательного напряжения не имеет значения, его обозначают без индексов.

Между полным напряжением и его составляющими существует зависимость

Напряжение, при котором происходит разрушение материала или возникают заметные пластические деформации, называют предельным.

Пример 4.1. Определить нормальное и касательное напряжения в точке К прямоугольного сечения балки (6х14 см), если изгибающий момент в этом сечении М х =–40кНм=–40 кНсм., а поперечная сила равна 20 кН.

Решение. Момент инерции прямоугольного поперечного сечения относительноглавной центральной оси x .

J x = = =1372 см 4 . .

Ось у направим вниз. Координата точки К равна у к = –4см.

Нормальное напряжение в точке К будет равно

=116,6 МПа.

Касательное напряжение в точке К вычисляем по формуле Журавского.

Статический момент отсечённой части площади сечения равен

Ширина сечения на уровне К равна b(y)= 6см.

Определим касательное напряжение в точке К.

=2,4 МПа.

Пример 4.2. Определить наибольшее растягивающее нормальное и наибольшее касательное напряжения в балке круглого сечения, если в сечении М х = 80 кНм= 80 10 3 кНсм, Q= 60кН.

Диаметр сечения d=14 см.


Решение. Наибольшее растягивающее нормальное напряжение возникает в нижнем волокне растянутой зоны сечения, т.е. в волокне наиболее удалённом от нейтральной оси х , и определяется по формуле

Наибольшие касательные напряжения возникают в точках сечения на уровне нейтральной оси х , где все касательные напряжения параллельны поперечной силе, и их можно определять по формуле Журавского.

Площадь сечения равна А = = =153,56 см 2 .

Момент сопротивления сечения равен W x = = 269,26см 3 .

Определим значение растягивающего наибольшего нормального

напряжения

=14,86 =148,6 МПа.

Определим значение наибольшего касательного напряжения

=0,52 =5,2МПа.

Пример 4.3. Определить нормальное и касательное напряжения в точке К на уровне примыкания стенки к полкам стального двутавра (I30), а также наибольшие нормальные и касательные напряжения, если М х =50 кНм=50 10 2 кНсм, Q =30 кН.

Решение. Из сортамента балки двутавровые выписываем необходимые данные для двутавра I30.

h = 300мм=30 см, b=135мм=13,5см, d = 6,5 см=0,65 см,

t=10,2 мм=1,02 см.

Площадь сечения А= 46,5 см 2 , момент инерции J х = 7080 см 4 , момент сопротивления W х = 472 см 3 .

Определим значение статического момента площади сечения полки относительно нейтральной оси х .

= 199,53 см 3 .

На уровне примыкания стенки к полкам касательные напряжения

Напряжение есть вектор и как всякий вектор может быть представлен нормальной (по отношению к площадке) и касательной составляющими (рис. 2.3). Нормальную составляющую вектора напряжений будем обозначать касательную . Экспериментальными исследованиями установлено, что влияние нормальных и касательных напряжений на прочность материала различно, и потому в дальнейшем окажется необходимым всегда раздельно рассматривать составляющие вектора напряжений.

Рис. 2.3. Нормальное и касательное напряжения в площадке

Рис. 2.4. Касательное напряжение при срезе болта

При растяжении болта (см. рис. 2.2) в поперечном сечении действует нормальное напряжение

При работе болта на срез (рис. 2.4) в сеченйи П должно возникать усилие, уравновешивающее усилие .

Из условий равновесия следует, что

В действительности последнее соотношение определяет некоторое среднее напряжение по сечению, которым иногда пользуются для приближенных оценок прочности. На рис. 2.4 показан вид болта после воздействия значительных усилий. Началось разрушение болта, и одна его половина сместилась относительно другой: произошла деформация сдвига или среза.

Примеры определения напряжений в элементах конструкций.

Разберем простейшие примеры, в которых предположение о равномерном распределении напряжений, можно считать практически приемлемым. В таких случаях величины напряжений определяются с помощью метода сечений из уравнений статики (уравнений равновесия).

Кручение тонкостенного круглого вала.

Тонкостенный круглый вал (труба) передает крутящий момент (например, от авиационного двигателя на воздушный винт). Требуется определить напряжения в поперечном сечении вала (рис. 2.5, а). Проведем плоскость сечения П перпендикулярно оси вала и рассмотрим равновесие отсеченной части (рис. 2.5, б).

Рис. 2.5. Кручение тонкостенного круглого вала

Из условия осевой симметрии, учитывая малую толщину стенки можно принять, что напряжения во всех точках поперечного сечения одинаковы.

Строго говоря, такое предположение справедливо только при очень малой толщине стенки, но в практических расчетах его используют, если толщина стенки

где - средний радиус сечения.

Внешние силы, приложенные к отсеченной части вала, сводятся только к крутящему моменту, и потому нормальные напряжения в поперечном сечении должны отсутствовать. Крутящий момент уравновешивается касательными напряжениями, момент которых равен

Из последнего соотношения находим касательное напряжение в сечении вала:

Напряжения в тонкостенном цилиндрическом сосуде (трубе).

В тонкостенном цилиндрическом сосуде действует давление (рис. 2.6, а).

Проведем сечение плоскостью П, перпендикулярной оси цилиндрической оболочки, и рассмотрим равновесие отсеченной части. Давление, действующее на крышку сосуда, создает усилив

Это усилие уравновешивается силами, возникающими в поперечном сечении оболочки, и интенсивность - указанных сил - напряжение - будет равна

Толщина оболочки 5 предполагается малой по сравнению со средним радиусом , напряжения считаются равномерно распределенными во всех точках поперечного сечения (рис. 2.6, б).

Однако на материал трубы действуют не только напряжения в продольном направлении, но и окружные (или кольцевые) напряжения в перпендикулярном направлении. Для их выявления выделим двумя сечениями кольцо длиной I (рис. 2.7), а затем проведем диаметральное сечение, отделяющее половину кольца.

На рис. 2.7, а показаны напряжения на поверхностях сечения. На внутреннюю поверхность трубы радиусом действует давление

Рис. 2.8. Трещина в цилиндрической оболочке при действии разрушающего внутреннего давления

Напряжение – численная мера распределения внутренних сил по плоскости поперечного сечения. Его используют при исследовании и определении внутренних сил любой конструкции.

Выделим на плоскости сечения площадку DA ; по этой площадке будет действовать внутренняя сила DR. Величина отношения DR/DA=p ср называется средним напряжением на площадке DA . Истинное напряжение в точке А получим устремив DA к нулю

Нормальные напряжения возникают, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц по плоскости рассматриваемого сечения.

Очевидно, что . Касательное напряжение в свою очередь может быть разложено по направлениям осей x и y (τ zх, τ zу ). Размерность напряжений – Н/м 2 (Па).


17. Понятие о напряжениях. Нормальные и касательные напряжения.

Внутренние силовые факторы. Метод сечений. Эпюры. Выражение внутренних силовых факторов через нормальные и касательные напряжения.

Внутренние силовые факторы

В процессе деформации бруса, под нагрузкой происходит изменение взаимного расположения элементарных частиц тела, в результате чего в нем возникают внутренние силы.

По своей природе внутренние силы представляют собой взаимодействие частиц тела, обеспечивающее его целостность и совместность деформаций.

Чтобы численно установить величину внутренних сил пользуются методом сечений.

Метод сечений сводится к четырем действиям:

1. Разрезают (мысленно) тело плоскостью в том месте, где нужно определить внутренние силы (рис. 7);

Рис. 7

2. Отбрасывают любую отрезанную часть тела (желательно наиболее сложную), а ее действие на оставшуюся часть заменяют внутренними силами, чтобы оставшаяся исследуемая часть находилась в равновесии (рис.8);

Рис. 8

3. Приводят систему сил к одной точке (как правило, к центру тяжести сечения) и проецируют главный вектор и главный момент системы внутренних сил на нормаль к плоскости (ось ) и главные центральные оси сечения ( и ).

Полученные силы (N, Qy, Qz) (рис. 9) и моменты (Мк, Мy, Mz) называют внутренними силовыми факторами в сечении

Рис. 9

Для внутренних силовых факторов приняты следующие названия:

-продольная или осевая сила;

И -поперечные силы ;

-крутящий момент ;

И -изгибающие моменты .

4. Находят внутренние силовые факторы, составляя шесть уравнений равновесия статики для рассматриваемой части рассеченного тела.

Эпю́ра (фр. epure - чертёж) - особый вид графика, показывающий распределение величины нагрузки на объект. Например, для стержня продольная ось симметрии берётся за область определения и составляются эпюры для сил, напряжений и разных деформаций в зависимости от абсциссы.



Расчёт эпюр напряжения является базовой задачей такой дисциплины, как сопротивление материалов. В частности, только при помощи эпюры возможно определить максимально допустимую нагрузку на материал.

Для построения ординаты эпюры M в каком либо сечении стержня

необходимо выполнить следующие две операции.

1. С помощью уравнения равновесия ∑M(слева)= 0 для левой отсеченной

части стержневой системы (или ∑M(справа) = 0 для правой части) подсчитать

численное значение изгибающего момента в сечении.

2. Отложить найденное численное значение в виде ординаты перпендикулярно оси стержня со стороны растянутого волокна стержня .

Численное значение изгибающего момента в сечении равно численному значению алгебраической суммы моментов всех сил, действующих на стержневую системус любой одной из сторон сечения , взятых относительно точки на оси сечения.

Составляющую, лежащую в сечении в данной площадке обознача­ется через и называется касательным напряжением .

Нормальное напряжение, направленное от сечения, считают положительным, направленное к сечению – отрицательным.

Нормальные напряжения возникают, когда под действием внешних сил частицы, расположенные по обе стороны от сечения, стремятся удалиться одна от другой или сблизиться. Касательные напряжения возникают, когда частицы стремятся сдвинуться одна относительно другой в плоскости сечения.

Касательное напряжение можно разложить по координатным осям на две составляющие и (рис. в) Первый индекс при показывает, какая ось перпендикулярна сечению, второй – параллельно какой оси действует напряжение. Если в расчетах направление касательного напряжения не имеет значения, его обозначают без индексов.



Что еще почитать